MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data

نویسندگان

  • Steffen Gebhardt
  • Thilo Wehrmann
  • Miguel Angel Muñoz Ruiz
  • Pedro Maeda
  • Jesse Bishop
  • Matthias Schramm
  • Rene Kopeinig
  • Oliver Cartus
  • Josef Kellndorfer
  • Rainer Ressl
  • Lucio Andrés Santos
  • Michael Schmidt
چکیده

Estimating forest area at a national scale within the United Nations program of Reducing Emissions from Deforestation and Forest Degradation (REDD) is primarily based on land cover information using remote sensing technologies. Timely delivery for a country of a size like Mexico can only be achieved in a standardized and cost-effective OPEN ACCESS Remote Sens. 2014, 6 3924 manner by automatic image classification. This paper describes the operational land cover monitoring system for Mexico. It utilizes national-scale cartographic reference data, all available Landsat satellite imagery, and field inventory data for validation. Seven annual national land cover maps between 1993 and 2008 were produced. The classification scheme defined 9 and 12 classes at two hierarchical levels. Overall accuracies achieved were up to 76%. Tropical and temperate forest was classified with accuracy up to 78% and 82%, respectively. Although specifically designed for the needs of Mexico, the general process is suitable for other participating countries in the REDD+ program to comply with guidelines on standardization and transparency of methods and to assure comparability. However, reporting of change is ill-advised based on the annual land cover products and a combination of annual land cover and change detection algorithms is suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923-3943

Gebhardt et al. (2014) presented the Monitoring Activity Data for the Mexican REDD+ program (MAD-MEX), an automatic nation-wide land cover monitoring system for the Mexican REDD+ MRV. Though MAD-MEX represents a valuable first effort toward establishing a national reference emissions level for the implementation of REDD+ in Mexico, in this paper, we argue that this land cover system has importa...

متن کامل

Reply to Mas et al.: Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens, 2014, 6, 3923-3943

Mas, J.F. et al. have submitted a paper [1] for publication, which aims to respond to a paper published by Gebhardt et al. [2]. Mas, J.F. et al. had received a consultancy in 2013 to assess the quality of the early prototype products partly described in Gebhardt et al. in 2014. This consultancy, although a formal non-disclosure agreement had not been demanded, was awarded under the mutual under...

متن کامل

An Operational Framework for Land Cover Classification in the Context of REDD+ Mechanisms. A Case Study from Costa Rica

REDD+ implementation requires robust, consistent, accurate and transparent national land cover historical data and monitoring systems. Satellite imagery is the only data source with enough periodicity to provide consistent land cover information in a cost-effective way. The main aim of this paper is the creation of an operational framework for monitoring land cover dynamics based on Landsat ima...

متن کامل

Completing the Picture: Importance of Considering Participatory Mapping for REDD+ Measurement, Reporting and Verification (MRV)

Remote sensing has been widely used for mapping land cover and is considered key to monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification (MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it also requires ground checking. Therefore, complementing remote sensing analysis using participatory mapping can help provide information fo...

متن کامل

Transition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document

  Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014